
A Communication Library for Mapping Dataflow Applications
on Manycore Architectures

Mingkun Yang, Süleyman Savas, Zain-ul-Abdin, and Tomas Nordström
Centre for Research on Embedded Systems (CERES),

Halmstad University, Sweden.
Emails: minyan09@student.hh.se, {Suleyman.Savas, Zain-ul-Abdin, Tomas.Nordstrom}@hh.se

Abstract—Dataflow programming is a promising paradigm for high
performance embedded parallel computing. When mapping a dataflow
program onto a manycore architecture a key component is the library
to express the communication between the actors. In this paper we
present a dataflow communication library supporting the CAL actor
language. A first implementation of the communication library is created
for Adapteva’s manycore architecture Epiphany that contains an on-
chip 2-D mesh network. Three different buffering methods, with and
without direct memory access (DMA) transfer, have been implemented
and evaluated. We have also made a preliminary study on the effect of
mapping strategies of the actors onto the cores. The assessment of the
library is based on a CAL implementation of a two dimensional inverse
discrete cosine transform (2D-IDCT) and our own CAL-to-C compilation
framework. As expected the results show that the most efficient actor-
to-core mapping strategy is to keep the communication to the nearest-
neighbor communication pattern as much as possible. Thus, the best way
to place a pipelined sequence of computations like our 2D-IDCT is to
place the actors into cores in a serpentine fashion. For this application
we found that the simple receiver side buffer outperforms the more
complicated buffering strategies that used DMA transfer.

I. INTRODUCTION

The computational requirements of high-performance embedded
applications, such as video processing in HDTV, baseband processing
in telecommunication systems, and radar signal processing, all have
reached a level where they cannot be met with traditional computing
systems based on general-purpose digital signal processors. The
conventional approach of using advanced architectural techniques in
uni-processors such as branch prediction, out-of-order execution, and
superscalar, in addition to the frequency scaling is reaching its limit
due to the increased power dissipation and complexity. Manycore
architectures consisting of tens or hundreds of processing cores offer
the possibility of meeting the growing performance demand in an
energy-efficient way by exploiting parallelism instead of scaling the
clock frequency of a single powerful processor [1].

Unfortunately, the traditional programming languages, due to their
sequential control flow, are struggling to utilize the emerging many-
core architectures. The focus of these sequential languages is to
provide abstractions for algorithm specification, but the abstractions,
intentionally, do not say much about how they are mapped to
underlying hardware. As a result, new languages based on parallel and
concurrent programming paradigms have emerged, and the dataflow
programming model seems to be a good candidate. However, apply-
ing the dataflow programming model on shared memory manycore
architectures is a challenging task, as there are no explicitly defined
mechanisms for communicating between the processing cores.

In this paper, we present a dataflow communication library that
facilitates the mapping of applications developed in the dataflow pro-
gramming model onto the manycore architectures. We use the CAL
dataflow language [2] to program an emerging manycore architecture,
namely Epiphany[3]. We describe three slightly different variants of
the implementation of communication mechanisms adopted by the

library and evaluate the results in the case study of two-dimensional
inverse discrete cosine transform (2D-IDCT).

II. BACKGROUND

In this section, we provide the background information about the
manycore architecture that is used in this work, together with the
background information about dataflow programming and the CAL
language.

A. Epiphany

Adapteva’s manycore architecture Epiphany [4] is a two-
dimensional array of processing cores connected by a mesh network-
on-chip. Each core has a floating-point RISC CPU, a direct mem-
ory access (DMA) engine, memory banks and a network interface
for communication between processing cores. An overview of the
Epiphany architecture can be seen in Figure 1. In the Epiphany

Fig. 1: Epiphany architecture overview.

architecture each core is a superscalar, floating-point, RISC CPU
that can execute two floating point operations and a 64-bit memory
load operation on every clock cycle. The cores are organized in
a 2D mesh topology with only nearest-neighbor connections. Each
core contains a network interface, a multi-channel DMA engine, a
multicore address decoder, and a network-monitor. The on-chip node-
to-node communication latencies are 1.5 clock cycles per routing hop,
with zero startup overhead. The network consists of three parallel
networks which are used individually for writing on-chip, writing
off-chip, and all reading requests, respectively. Due to the differences
between the networks, writes are approximately 16 times faster than
reads for on-chip transactions. The transactions are done by using
dimension-order routing (X-Y routing), which means that the data
first travels along the row and then along the column. The DMA
engine is able to generate a double-word transaction on every clock
cycle and has its own dedicated 64-bit port to the local memory. The
Epiphany architecture uses a shared memory model with a single,
flat address space. Each core has its own aliased, local memory
range which has a size of 32 kB. The local memory of each core
is accessible globally from any other core by using the globally



addressable IDs. However, even though all the internal memory of
each core is mapped to the global address space, the cost (latency)
of accessing them is not uniform as it will depend on the number of
hops and contention in the mesh network.

B. Dataflow Programming

Dataflow programming is a programming paradigm that models a
program as a directed graph of the data flowing between operations
or actors that operate on the dataflow. Dataflow programming em-
phasizes the movement of data and models programs as a series of
connected actors. Each actor only communicates through explicitly
defined input and output connectors and functions like a black
box. As soon as all of its inputs become valid, an actor runs
asynchronous from all other actors. Thus, dataflow languages are
inherently parallel and can work well in large, decentralized systems.
Dataflow programming is especially suited for streaming applications,
where data is processed as a continuous stream, as, e.g., video, radar,
or base station signal processing.

A number of dataflow languages and techniques exist [5], [6], and
one interesting modern dataflow language is CAL (Cal Actor Lan-
guage) [2], [7]. Which has recently been used in the standardization
of MPEG Reconfigurable Video Coding (RVC) [8].

A CAL dataflow program consists of stateful operators, called
actors, that transform input streams of data objects (tokens) into
output streams. The actors are connected by FIFO channels and they
consist of code blocks called actions. These actions transform the
input data into output data, usually with the state of the actor changed.

C. CAL Compilers

CAL compilers have already been targeting a variety of plat-
forms, including single-core processors, multicore processors, and
programmable hardware. The Cal2C compiler [9] targets the single-
core processors by generating sequential C-code. The Open-RVC
CAL Compiler (ORCC) [10] generates multi-threaded C-code that
can execute on a multicore processor using dedicated run-time system
libraries. Similarly the d2c [11] compiler produces C-code that makes
use of POSIX threads to execute on multicore processors.

In this paper, we will target manycore architectures and will base
our work on an in-house CAL compiler that generates separate C-
code for each actor instance so that it could be executed on individual
processing cores. Therefore we do not require any run-time system
support for concurrent execution of actors, in contrast to ORCC and
d2c. The contribution of this paper lies in describing and evaluating
a communication library that supports the communication between
actors that are allocated to different cores in a manycore architecture.

III. THE DATAFLOW COMMUNICATION LIBRARY

All the communication that is done between the actors is done
through FIFO buffers, thus making this functionality a key component
for the compilation of the applications developed in CAL onto a
manycore architecture. We suggest to implement this functionality
as a dataflow communication library, with only five basic functions.
In addition to the traditional functions of write and read from
the FIFO buffer we have added functions such as connect which
logically connects two actors, disconnect which logically discon-
nects the actors, and finally a function end_of_transmission
that flushes the buffer and indicates that there are no further tokens
to be sent.

When implementing these buffers on the Epiphany architecture,
two special features of this architecture need to be considered. First
one is the speed difference between read and write transactions (as

mentioned earlier, writes are faster). The second one is the potential
use of DMA to speed up memory transfer and allowing the processor
to do processing in parallel with the memory transfer.

We have investigated three ways to implement the FIFO buffering.
The first implementation is a ‘one-end-buffer’ which places the buffer
inside the input port in the destination core. (Putting the buffer on
the source core would result in reads instead of writes and thus a
tenfold slowdown.) The communication overhead resides completely
in the sender.

If we want to use DMA, we need to have a buffer to both the sender
and receiver side. In the second implementation (‘two-end-buffer’)
each core performs read and write transactions on its local memory
and then uses DMA to transfer the data. This transfer is performed
when both sides are ready, which requires that the sender’s buffer
is full and the receiver’s buffer is empty. Even though we are using
DMA for data transfer, the processor will be busy waiting for the
DMA to finish. This is obviously not very efficient, and this method
should be seen as a transition to our third method.

To allow the DMA to work in parallel with the processing core,
we have implemented a ‘double-two-end-buffer’ method, which in-
troduces two “ping-pong” buffers on each side of the communication
channel. This allows the cores to work on one local buffer while the
data from the other buffer is transferred to the other core by means
of DMA.

If the token production rate on the sending actor is equivalent to the
token consumption rate on the receiving actor, it is expected that the
‘double-two-end-buffer’ method should be the most efficient. On the
other hand, if there is a big imbalance in the production/consumption
rate, all three buffering methods will suffer from blocking, after the
buffer gets full.

We have implemented the broadcast capability in all the three
implementations of the communication API. In all implementations,
the synchronization between sender and receiver is achieved by
polling the observed buffer directly. Because of this remote access
a lot of traffic is generated during busy waiting. One possible
optimization to reduce the traffic is to create local mirrors for the
variables we are polling. In other words, the polling core should
use the local mirrored version instead of the original variables in the
remote core. Obviously, the observed core needs to update the mirrors
in addition to the original variables, which introduces noticeable
overhead. The possible benefit of this optimization will be analyzed
in our investigation below.

The write and read function calls are designed to be asyn-
chronous (non-blocking calls) by default, and they will be blocking
only on buffer full and buffer empty respectively. The functions
end_of_transmission, connect, and disconnect calls
will always be blocking.

A. Implementation Details

In order to implement the write and read function calls with the
use of DMA, we have implemented four internal support functions.
The functions ‘try_flush’ and ‘do_flush’ are the two basic
functions that are intend for asynchronous and synchronous function
calls, respectively. For details see [12].

Figure 2 shows three consecutive states of the sender side buffer in
the ‘two-end-buffer’ implementation, when using the ‘try_flush’
asynchronous function call. The red arrows indicate the next free
slot,that will be occupied in the next write operation. The scenario
begins with the buffer having only one free slot, as shown in
Figure 2a. When one new token is generated and put into this buffer
by calling the write function, the state of buffer will change to that



shown in Figure 2b and the asynchronous function is called before
updating the index pointer. Since this is an asynchronous function,
the caller exits without blocking and the resulting buffer state is
shown in Figure 2c. This function call will start a DMA transaction
if the following three requirements are met: the source buffer is full,
the destination buffer is empty, and there is an idle DMA channel.
Otherwise it will exit immediately. The ‘do_flush’ synchronous

0 1 2 ... 9

(a)

0 1 2 ... 9

(b)

0 1 2 ... 9

(c)

Fig. 2: The consecutive state of one buffer, when there’s only one
empty slot initially. One write function call will fill the empty slot
with the token, and asynchronous function is called, at (2b), right
before updating the write pointer.

function is used to ensure that we do not overwrite the data that has
not been transferred to the destination core yet. This function is called
when the buffer is full and the core tries to send one token. Since
it is possible that DMA has not yet started because any of the three
requirements are not met, or alternatively DMA has been started but
has not finished yet, this synchronous version has to take care of both
of these cases so that it does not perform the same task more than
once.

Similar to the ‘try_flush’ and ‘do_flush’ functions, there
are the ‘try_distribute’ and ‘do_distribute’ functions,
which are implemented to transfer data in a broadcast manner from
a single output port to multiple destination input ports. The current
implementation for iterating the multiple destination ports is done in
a sequence starting from the first till the last. The implementation
of the two functions, used for distributing the tokens, varies in
the case of ‘two-end-buffer’ and ‘double-two-end-buffer’ methods.
The ‘try_distribute’ is called asynchronously when one of the
buffers is full, as shown in Figure 3a and on each subsequent write
operation to the alternate buffer, as shown in Figure 3b and Figure 3c.

0 1 2 ... 9

0 1 2 ... 9

(a)

0 1 2 ... 9

0 1 2 ... 9

(b)

0 1 2 ... 9

0 1 2 ... 9

(c)

Fig. 3: The state of the buffers when the asynchronous function call
is used and there are still available slots in the buffers.

IV. RESULTS AND DISCUSSION

As our case study we chose the two-dimensional inverse discrete
cosine transform (2D-IDCT), which is one component of MPEG
standard video decoders. We use a 64,000 input data sample for one
execution of complete application. Additionally, we also evaluate the
performance with a minimal test case consisting of only the first 64
samples. This minimal test case allows us to remove certain buffering
effects. The CAL implementation we are using consists of 15 actor
instances mapped to 15 out of the 16 cores in the Epiphany chip
(E16G301), which is executing at 400 MHz. This implementation
of 2D-IDCT uses two one-dimensional inverse discrete cosine trans-
forms in sequence, with all actor instances connected in a pipeline
fashion.

Layout Implementation’s average execution time (ms)
v1 v2 v3 v1o v2o v3o

row-order 614 622 624 615 615 619
serpentine 612 619 620 612 613 618

TABLE I: Total execution time of 2D-IDCT for 64,000 samples using
different layout and different implementations.

The total execution time for 64,000 samples using various im-
plementations of our library is shown in Table I. Each value in the
table is the average of 10 consecutive runs. The columns ‘v1’, ‘v2’,
and ‘v3’ denote the three implementations: ‘one-end-buffer’, ‘two-
end-buffer’, and ‘double-two-end-buffer’, respectively. The next three
columns ‘v1o’, ‘v2o’, and ‘v3o’ reflect the optimization when polling
local copies of synchronizing variables. The memory footprint of
the three buffering methods is kept equal, thus the buffer size is
100, 50, 25 words for ‘v1’, ‘v2’, ‘v3’, respectively. We have also
evaluated this application using other buffer sizes (ranging from 10
to 200). However, for this application the buffer size was not found
to significantly affect the execution time.1

The two rows in Table I represent two different mapping layouts.
In the ‘row-order’ layout actors are assigned to cores sequentially,
i.e., the actor sequence 0 to 15 is mapped to core id 0 to 15, thereby
ignoring the fact that, e.g., core 3 is not the nearest neighbor to core
4. On the other hand, the ‘serpentine’ layout takes into account the
physical layout of the cores on the chip and the X-Y routing used,
so that consecutive actors are mapped into neighboring cores. In this
case, the actor sequence 0 to 15 is mapped to core ids {0-3, 7-4, 8-11,
15-12}, taking into consideration the fact that cores 3 and 7, as well
as cores 11 and 15, are nearest neighbors to each other. Our results
indicate that the ‘serpentine’ layout slightly outperforms the ‘row-
order’ layout in all implementations. However, this result might not be
universally applicable as our 2D-IDCT algorithm has a very specific
communication pattern. Interestingly we only see improvement for
the optimized methods, which poll local copies of synchronizing
variables, for the DMA based buffering methods (‘v2’ and ‘v3’).
It seems that when using the ‘one-end-buffer (v1o)’, the overhead of
maintaining local copies outweighs the benefit it introduces.

To further analyze the behavior of our library, Figures 4 - 6 present
for each core the number of clock cycles spent in the communication
library (API) in relation to the total number of clock cycles. The
clock cycles spent on reading and writing to the external memory
are not included in the number of cycles spent in the communication
library.

Figure 4 shows the number of clock cycles corresponding to the
execution times given in Table I. In this figure we see that a significant
amount of the total time is spent in library calls. This unexpected
behavior can be explained by the bottleneck in the last node, which
is writing to the (slow) external memory. Thus, the clock cycles are
not spent on reading from or writing to buffers, but instead waiting
due to a full buffer. The full buffer at the last node leads to backward
pressure until all nodes are affected.

To remove the effect of this “backpressure” in our further analysis,
we evaluated our implementation using only 64 samples, and the
results are shown in Figure 5 and 6, with or without extern memory
access, respectively. The largest difference between the results in
these two figures can be found at the first (core 0) and last (core
13) actor as they are interacting with external memory. Due to the
better resolution of the total execution time in the last two figures,

1The raw data can be found at https://github.com/albertnetymk/com lib
data

https://github.com/albertnetymk/com_lib_data
https://github.com/albertnetymk/com_lib_data


we can identify two groups of actors, comprising core ids 1,2,3,7,6
and 4,8,9,10,11, respectively. These two groups corresponds to the
two 1D-IDCT that builds up the 2D-IDCT implementation.

Fig. 4: Number of clock cycles spent in the communication library
(API) in relation to the total number of clock cycles for each core
(one-end-buffer optimized (v1o) implementation with buffer size 100
using 64000 input data tokens read from external memory).

Fig. 5: Number of clock cycles spent in the communication library
(API) in relation to the total number of clock cycles for each core
(one-end-buffer optimized (v1o) implementation with buffer size 100
using 64 input data tokens read from external memory).

V. FUTURE WORK

In the future it will be necessary to run and evaluate our library on
additional applications, especially those with more complex commu-
nication patterns. We would also like to explore methods to optimally
map actors onto cores based on the application communication graph
and a communication architecture description. To the dataflow com-
munication library we intend to add some synchronization functions,
supporting both ”core to core” synchronization and ”host with chip”
synchronization. In the current library the method to distribute tokens
to multiple receivers is done in a strict sequence and a more optimized
order needs to be investigated.

VI. CONCLUSION

In this paper, we have introduced a new dataflow communication
library supporting a message passing interface for dataflow languages.

Fig. 6: Number of clock cycles spent in the communication library
(API) in relation to the total number of clock cycles for each core
(one-end-buffer optimized (v1o) implementation with buffer size 100
using 64 input data tokens read from local memory).

We have implemented and evaluated various buffering approaches
using the 2D-IDCT application on Adapteva’s Epiphany manycore
architecture. The overall best buffering method was found to be
the ‘one-end-buffer’ method with a single receiver buffer. The more
advanced buffering methods trying to utilize DMA transfer did not
perform as well for the selected application. However, it cannot
be excluded that applications with more complex communication
patterns could benefit from the ‘double-two-end-buffer’ method. In
addition we have shown the benefit of carefully mapping the actors
onto cores so that nearest-neighbor communication can be utilized.

REFERENCES

[1] S. Borkar, “Thousand core chips - a technology perspective,” in DAC
2007, San Diego, California, USA, 2007, pp. 746–749.

[2] J. Eker and J. W. Janneck, “CAL language report specification of
the CAL actor language,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M03/48, 2003.

[3] L. Gwennap, “Adapteva: More flops, less watts,” Microprocessor
Report, 6/13/11-02, Tech. Rep., 2011.

[4] Epiphany, “Epiphany architecture reference G3, rev 3.12.12.18,”
Adapteva, Tech. Rep., 2013.

[5] E. A. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[6] B. Bhattacharya and S. S. Bhattacaryya, “Parameterized dataflow
modeling for DSP systems,” IEEE Transactions on Signal Processing,
vol. 49, no. 10, pp. 2408–2421, 2001.

[7] J. Eker and J. W. Janneck, “Dataflow programming in CAL – balanc-
ing expressiveness, analyzability, and implementability,” in Conference
Record of the Forty Sixth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR), 2012. IEEE, 2012, pp. 1120–1124.

[8] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the MPEG reconfigurable video coding
framework,” Journal of Signal Processing Systems, Springer, 2009.

[9] G. Roquier, M. Wipliez, M. Raulet, J.-F. Nezan, and O. Déforges,
“Software synthesis of CAL actors for the MPEG reconfigurable video
coding framework,” in 15th IEEE International Conference on Image
Processing, 2008. ICIP 2008. IEEE, 2008, pp. 1408–1411.

[10] ORCC, “Open RVC-CAL compiler,” http://orcc.sourceforge.net/,
Accessed: 3 Aug 2013, 2013.

[11] D2C, “CAL ARM compiler,” http://sourceforge.net/projects/opendf/,
Accessed: 3 Aug 2013, 2013.

[12] M. Yang, “CAL code generator for epiphany architecture,” Master
Thesis, Halmstad University, 2013, in preparation.


	Introduction
	Background
	Epiphany
	Dataflow Programming
	CAL Compilers

	The dataflow communication library
	Implementation Details

	Results and Discussion
	Future Work
	Conclusion
	References

